

Expressiveness, CTL Model Checking

Dr. Liam O'Connor CSE, UNSW (for now) Term 1 2020

CTL Model Checking

Comparing Logics

Formula Equivalence

Two formulae are equivalent iff they admit the same models.

$$\frac{\forall A. \ (A \models P) \Leftrightarrow (A \models Q)}{P \equiv Q}$$

Logic Expressiveness

A logic L_1 is more expressive than a logic L_2 , written $L_2 \subseteq L_1$, iff: For all $\varphi_2 \in L_2$, there is a $\varphi_1 \in L_1$ such that $\varphi_1 \equiv \varphi_2$.

$\mathsf{CTL} \subseteq \mathsf{CTL}^* \text{? } \mathsf{LTL} \subseteq \mathsf{CTL}^* \text{? } \mathsf{LTL} \subseteq \mathsf{CTL} \text{? } \mathsf{CTL} \subseteq \mathsf{LTL} \text{?}$

LTL formulae look like CTL* *path formulae*. How do we convert them into equivalent *state formulae*?

Recall that $A \models \varphi$ iff $\forall \rho \in \text{Traces}(A)$. $\rho \models \varphi$

LTL formulae look like CTL* *path formulae*. How do we convert them into equivalent *state formulae*?

Recall that $A \models \varphi$ iff $\forall \rho \in \text{Traces}(A)$. $\rho \models \varphi$

For all LTL formulae φ :

$$A\models_{\mathsf{LTL}}\varphi\Longleftrightarrow A\models_{\mathsf{CTL}^*}\mathbf{A}\varphi$$

Proof follows trivially from the definition of A.

CTL Model Checking

$\mathbf{CTL} \subseteq \mathbf{LTL?}$

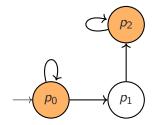
CTL Formula: AF AG •

CTL Model Checking

$CTL \subseteq LTL?$

CTL Formula: AF AG •

LTL Formula: **FG** •? does this work?

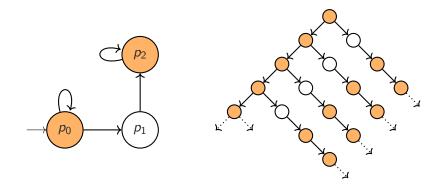


CTL Model Checking

$CTL \subseteq LTL?$

CTL Formula: AF AG •

LTL Formula: **FG** •? does this work?

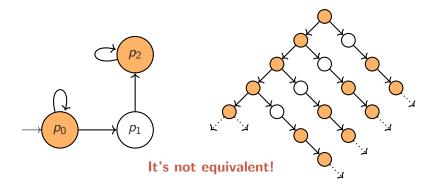


CTL Model Checking

$CTL \subseteq LTL?$

CTL Formula: AF AG •

LTL Formula: **FG** •? does this work?



CTL Model Checking

$\mathsf{CTL} \not\subseteq \mathsf{LTL}$

Let's prove it.

Let's prove it.

Lemma (Trace Inclusion)

If Traces(A) \subseteq Traces(B) then for any LTL formula φ , B $\models \varphi \implies A \models \varphi$

Let's prove it.

Lemma (Trace Inclusion)

If Traces(A) \subseteq Traces(B) then for any LTL formula φ , B $\models \varphi \implies A \models \varphi$

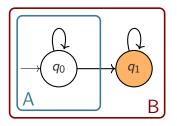
Suppose \exists an LTL formula φ that is equivalent to AG EF \bullet .

Let's prove it.

Lemma (Trace Inclusion)

```
If Traces(A) \subseteq Traces(B) then for any LTL formula \varphi,
B \models \varphi \implies A \models \varphi
```

Suppose \exists an LTL formula φ that is equivalent to AG EF \bullet .

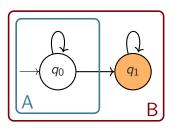


Let's prove it.

Lemma (Trace Inclusion)

If Traces(A) \subseteq Traces(B) then for any LTL formula φ , B $\models \varphi \implies A \models \varphi$

Suppose \exists an LTL formula φ that is equivalent to **AG EF** \bullet .



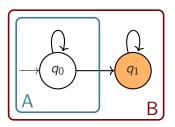
Proof
Observe that $B \models AG EF \bullet$ but $A \not\models AG EF \bullet$

Let's prove it.

Lemma (Trace Inclusion)

If Traces(A) \subseteq Traces(B) then for any LTL formula φ , B $\models \varphi \implies A \models \varphi$

Suppose \exists an LTL formula φ that is equivalent to **AG EF** \bullet .



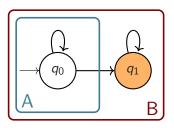
Proof Observe that $B \models AG EF \bullet$ but $A \not\models AG EF \bullet$ Because φ is equivalent, we know $B \models \varphi$ and $A \not\models \varphi$.

Let's prove it.

Lemma (Trace Inclusion)

If Traces(A) \subseteq Traces(B) then for any LTL formula φ , B $\models \varphi \implies A \models \varphi$

Suppose \exists an LTL formula φ that is equivalent to **AG EF** \bullet .



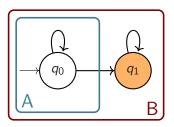
Proof Observe that $B \models AG EF \bullet$ but $A \not\models AG EF \bullet$ Because φ is equivalent, we know $B \models \varphi$ and $A \not\models \varphi$. But, as Traces $(A) \subseteq Traces(B)$, our lemma says that $A \models \varphi$.

Let's prove it.

Lemma (Trace Inclusion)

If Traces(A) \subseteq Traces(B) then for any LTL formula φ , B $\models \varphi \implies A \models \varphi$

Suppose \exists an LTL formula φ that is equivalent to **AG EF** \bullet .



Proof Observe that $B \models AG EF \bullet$ but $A \not\models AG EF \bullet$ Because φ is equivalent, we know $B \models \varphi$ and $A \not\models \varphi$. But, as Traces $(A) \subseteq Traces(B)$, our lemma says that $A \models \varphi$. **Contradiction!**

CTL Model Checking

$LTL \subseteq CTL?$

LTL Formula: $F (\bullet \land X \bullet)$

CTL Model Checking

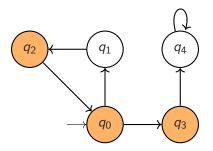
$LTL \subseteq CTL?$

LTL Formula: $F (\bullet \land X \bullet)$ CTL Formula: $AF (\bullet \land AX \bullet)$. Does this work?

CTL Model Checking

$LTL \subseteq CTL?$

LTL Formula: $F (\bullet \land X \bullet)$ CTL Formula: $AF (\bullet \land AX \bullet)$. Does this work?



Nope!

Lemma

It is possible to construct two families of automata A_i and B_i such that:

• They are distinguished by the LTL formula $\mathbf{F} \mathbf{G} \bullet$, that is: $A_i \models \mathbf{F} \mathbf{G} \bullet$ but $B_i \not\models \mathbf{F} \mathbf{G} \bullet$ for any *i*.

Lemma

It is possible to construct two families of automata A_i and B_i such that:

- They are distinguished by the LTL formula $\mathbf{F} \mathbf{G} \bullet$, that is: $A_i \models \mathbf{F} \mathbf{G} \bullet$ but $B_i \not\models \mathbf{F} \mathbf{G} \bullet$ for any *i*.
- They cannot be distinguished by CTL formulae of length ≤ i. That is, ∀i. ∀φ. |φ| ≤ i ⇒ (A_i ⊨ φ ⇔ B_i ⊨ φ)

See the textbook (Baier and Katoen) for details.

Lemma

It is possible to construct two families of automata A_i and B_i such that:

- They are distinguished by the LTL formula $\mathbf{F} \mathbf{G} \bullet$, that is: $A_i \models \mathbf{F} \mathbf{G} \bullet$ but $B_i \not\models \mathbf{F} \mathbf{G} \bullet$ for any *i*.
- They cannot be distinguished by CTL formulae of length ≤ i. That is, ∀i. ∀φ. |φ| ≤ i ⇒ (A_i ⊨ φ ⇔ B_i ⊨ φ)

See the textbook (Baier and Katoen) for details.

Proof

Let φ be a CTL formula equivalent to **F G** \bullet .

Lemma

It is possible to construct two families of automata A_i and B_i such that:

- They are distinguished by the LTL formula $\mathbf{F} \mathbf{G} \bullet$, that is: $A_i \models \mathbf{F} \mathbf{G} \bullet$ but $B_i \not\models \mathbf{F} \mathbf{G} \bullet$ for any *i*.
- They cannot be distinguished by CTL formulae of length ≤ i. That is, ∀i. ∀φ. |φ| ≤ i ⇒ (A_i ⊨ φ ⇔ B_i ⊨ φ)

See the textbook (Baier and Katoen) for details.

Proof

Let φ be a CTL formula equivalent to **F G** •.Let k be the length of φ , i.e. $k = |\varphi|$.

Lemma

It is possible to construct two families of automata A_i and B_i such that:

- They are distinguished by the LTL formula $\mathbf{F} \mathbf{G} \bullet$, that is: $A_i \models \mathbf{F} \mathbf{G} \bullet$ but $B_i \not\models \mathbf{F} \mathbf{G} \bullet$ for any *i*.
- They cannot be distinguished by CTL formulae of length ≤ i. That is, ∀i. ∀φ. |φ| ≤ i ⇒ (A_i ⊨ φ ⇔ B_i ⊨ φ)

See the textbook (Baier and Katoen) for details.

Proof

Let φ be a CTL formula equivalent to **F G** •.Let k be the length of φ , i.e. $k = |\varphi|$. From lemma, $A_k \models \mathbf{F} \mathbf{G} \bullet$ and $B_k \not\models \mathbf{F} \mathbf{G} \bullet$,

Lemma

It is possible to construct two families of automata A_i and B_i such that:

- They are distinguished by the LTL formula $\mathbf{F} \mathbf{G} \bullet$, that is: $A_i \models \mathbf{F} \mathbf{G} \bullet$ but $B_i \not\models \mathbf{F} \mathbf{G} \bullet$ for any *i*.
- They cannot be distinguished by CTL formulae of length ≤ i. That is, ∀i. ∀φ. |φ| ≤ i ⇒ (A_i ⊨ φ ⇔ B_i ⊨ φ)

See the textbook (Baier and Katoen) for details.

Proof

Let φ be a CTL formula equivalent to **F G** \bullet .Let k be the length of φ , i.e. $k = |\varphi|$. From lemma, $A_k \models \mathbf{F} \mathbf{G} \bullet$ and $B_k \not\models \mathbf{F} \mathbf{G} \bullet$, but also $A_k \models \varphi \Leftrightarrow B_k \models \varphi$,

Lemma

It is possible to construct two families of automata A_i and B_i such that:

- They are distinguished by the LTL formula $\mathbf{F} \mathbf{G} \bullet$, that is: $A_i \models \mathbf{F} \mathbf{G} \bullet$ but $B_i \not\models \mathbf{F} \mathbf{G} \bullet$ for any *i*.
- They cannot be distinguished by CTL formulae of length ≤ i. That is, ∀i. ∀φ. |φ| ≤ i ⇒ (A_i ⊨ φ ⇔ B_i ⊨ φ)

See the textbook (Baier and Katoen) for details.

Proof

Let φ be a CTL formula equivalent to **F G** •.Let k be the length of φ , i.e. $k = |\varphi|$. From lemma, $A_k \models \mathbf{F} \mathbf{G} \bullet$ and $B_k \not\models \mathbf{F} \mathbf{G} \bullet$, but also $A_k \models \varphi \Leftrightarrow B_k \models \varphi$, so φ cannot be equivalent. **Contradiction!**

CTL Model Checking

$\textbf{CTL} \subset \textbf{CTL}^*$

Every CTL formula is also a CTL* formula. But is it a strict inclusion (i.e. $CTL \subset CTL^*$)?

CTL Model Checking

$\textbf{CTL} \subset \textbf{CTL}^*$

Every CTL formula is also a CTL* formula. But is it a strict inclusion (i.e. CTL \subset CTL*)? Yes.

$\mathsf{CTL} \subset \mathsf{CTL}^*$

Every CTL formula is also a CTL* formula. But is it a strict inclusion (i.e. $CTL \subset CTL^*$)? Yes. We know already that $LTL \subseteq CTL^*$ and that $LTL \not\subseteq CTL$. So pick any LTL formula that cannot be expressed in CTL, and we have a formula that cannot be expressed in CTL but can be in CTL*.

CTL Model Checking

$LTL \subset CTL^*$

We saw that LTL \subseteq CTL*. But is it a strict inclusion? (i.e. LTL \subset CTL*)?

CTL Model Checking

$LTL \subset CTL^*$

We saw that LTL \subseteq CTL*. But is it a strict inclusion? (i.e. LTL \subset CTL*)? Yes.

$LTL \subset CTL^*$

We saw that LTL \subseteq CTL*. But is it a strict inclusion? (i.e. LTL \subset CTL*)? Yes. We know already that CTL \subseteq CTL* and that CTL $\not\subseteq$ LTL. So pick any CTL formula that cannot be expressed in LTL, and we have a formula that cannot be expressed in LTL but can be in CTL*.

CTL Model Checking

$(LTL \cup CTL) \subset CTL^*$

Is there any formula that ${\bf can}$ be expressed in CTL* but not in CTL nor in LTL?

$(\mathsf{LTL} \cup \mathsf{CTL}) \subset \mathsf{CTL}^*$

Is there any formula that ${\bf can}$ be expressed in CTL* but not in CTL nor in LTL?

Strict Inclusion

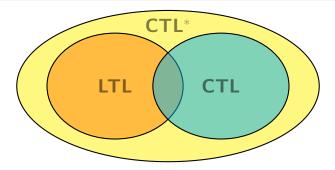
Yes. The proof is very involved, but the formula **E G F** • cannot be expressed in either LTL nor CTL.

$(LTL \cup CTL) \subset CTL^*$

Is there any formula that ${\bf can}$ be expressed in CTL* but not in CTL nor in LTL?

Strict Inclusion

Yes. The proof is very involved, but the formula **E G F** \bullet cannot be expressed in either LTL nor CTL.



The CTL Model Checking Problem

Given

- A CTL formula φ , and
- An automaton A,

Determine if $A \models \varphi$.

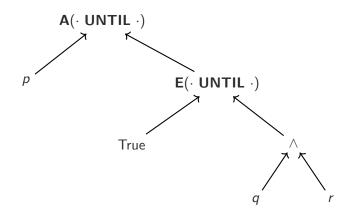
Our approach

We first break the formula up into a *parse tree*. Then, annotate states in a bottom-up fashion with the (sub-)formulae they satisfy.

CTL Model Checking

Parse Trees

$A(p \text{ UNTIL } E(\text{True UNTIL } q \land r))$



Formal Algorithm: Basic Propositionscase
$$\varphi \in \mathcal{P}$$
 do/* Atomic proposition */foreach $q \in Q$ doif $\varphi \in L(q)$ then| $q.\varphi :=$ True;else| $q.\varphi :=$ True;else| $q.\varphi :=$ False;case $\varphi = \neg \psi$ do/* Negation */Mark(A, ψ);foreach $q \in Q$ do $\lfloor q.\varphi := \neg q.\psi$;/* Conjunction */mark(A, ψ_1); Mark(A, ψ_2);foreach $q \in Q$ do $\lfloor q.\varphi := q.\psi_1 \land q.\psi_2$;/* Conjunction */

*/

Formal Algorithm: EX

case
$$\varphi = \mathsf{EX} \ \psi \ \mathsf{do}$$
 /* Exists a Successor
Mark (A, ψ) ;
foreach $q \in Q \ \mathsf{do}$
 $\ \ \left\lfloor \ \ q.\varphi := \mathsf{False}; \right]$
foreach $(q,q') \in \delta \ \mathsf{do}$
 $\ \ \left\lfloor \ \ q.\varphi := \mathsf{True}; \right]$

We can simplify **AX** ψ to \neg **EX** $\neg\psi$. Why?

CTL Model Checking

```
case \varphi = \mathbf{E} \psi_1 UNTIL \psi_2 do
                                                    /* Exist Until */
    Mark(A, \psi_1); Mark(A, \psi_2);
    foreach q \in Q do
         q.\varphi := False;
         q.visited := False;
         if q_{.}\psi_{2} then
             q.\varphi := True ;
             q.visited := True;
             W := W \cup \{q\};
    while W \neq \emptyset do
         q := pop(W); /* q satisfies \varphi */
         foreach (q', q) \in \delta do
             if \neg q'.visited then
                 q'.visited := True;
                 if q'.\psi_1 then
               | \quad | \quad q'.\varphi := \mathsf{True}; \ W := W \cup \{q'\};
```

CTL Model Checking

$$\begin{array}{c|c} \textbf{case } \varphi = \textbf{A} \ \psi_1 \ \textbf{UNTIL } \ \psi_2 \ \textbf{do} & /* \ \textbf{For All Until } */\\ \hline \textbf{Mark}(A, \psi_1) \ ; \ \textbf{Mark}(A, \psi_2); \\ \textbf{foreach } q \in Q \ \textbf{do} \\ \hline q.\varphi := \textbf{False}; \\ q.nbUnchecked := |\delta(q)|; \\ \textbf{if } q.\psi_2 \ \textbf{then} \\ \hline q.\varphi := \textbf{True }; \\ W := W \cup \{q\}; \\ \hline \textbf{while } W \neq \varnothing \ \textbf{do} \\ \hline q := pop(W); \\ /* \ q \ \textbf{satisfies } \varphi \ */ \\ \textbf{foreach } (q',q) \in \delta \ \textbf{do} \\ \hline q'.nbUnchecked := q'.nbUnchecked - 1; \\ \textbf{if } (q'.nbUnchecked := 0 \land q'.\psi_1 \land \neg q'.\varphi) \ \textbf{then} \\ \hline q'.\varphi := \textbf{True }; \\ W := W \cup \{q'\}; \\ \end{array}$$

Assume a fixed size of formula $|\varphi|,$ what is the run time complexity of this algorithm?

 \bullet Complexity for atomic propositions, \wedge and $\neg:$

- Complexity for atomic propositions, \wedge and \neg : $\mathcal{O}(|Q|)$
- Complexity for **EX**:

- Complexity for atomic propositions, \wedge and $\neg:$ $\mathcal{O}(|\mathcal{Q}|)$
- Complexity for **EX**: $\mathcal{O}(|Q|)$
- Complexity for $E(\cdot UNTIL \cdot)$:

- Complexity for atomic propositions, \wedge and $\neg:$ $\mathcal{O}(|\mathcal{Q}|)$
- Complexity for **EX**: $\mathcal{O}(|Q|)$
- Complexity for $E(\cdot UNTIL \cdot)$: $\mathcal{O}(|Q| + |\delta|)$
- Complexity for $A(\cdot UNTIL \cdot)$:

- Complexity for atomic propositions, \land and $\neg: \mathcal{O}(|Q|)$
- Complexity for **EX**: $\mathcal{O}(|Q|)$
- Complexity for $E(\cdot UNTIL \cdot)$: $\mathcal{O}(|Q| + |\delta|)$
- Complexity for $A(\cdot UNTIL \cdot)$: $O(|Q| + |\delta|)$

Assume a fixed size of formula $|\varphi|,$ what is the run time complexity of this algorithm?

- Complexity for atomic propositions, \land and $\neg: \mathcal{O}(|Q|)$
- Complexity for **EX**: $\mathcal{O}(|Q|)$
- Complexity for $E(\cdot UNTIL \cdot)$: $\mathcal{O}(|Q| + |\delta|)$
- Complexity for $A(\cdot UNTIL \cdot)$: $O(|Q| + |\delta|)$

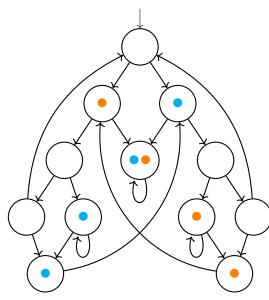
Therefore, overall complexity is:

Assume a fixed size of formula $|\varphi|,$ what is the run time complexity of this algorithm?

- Complexity for atomic propositions, \land and $\neg: \mathcal{O}(|Q|)$
- Complexity for **EX**: $\mathcal{O}(|Q|)$
- Complexity for $E(\cdot UNTIL \cdot)$: $\mathcal{O}(|Q| + |\delta|)$
- Complexity for $A(\cdot UNTIL \cdot)$: $O(|Q| + |\delta|)$

Therefore, overall complexity is: $\mathcal{O}((|Q| + |\delta|) \times |\varphi|)$

Example



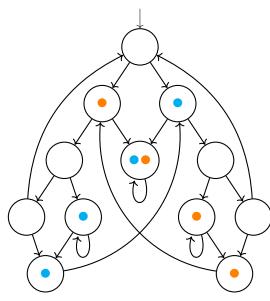
Procedure

- Simplify to basic CTL operations.
- Build parse tree for new formula.
- Mark states bottom up as described.

Example

● EF (● ∧ ●)

Example



Procedure

- Simplify to basic CTL operations.
- Build parse tree for new formula.
- Mark states bottom up as described.

Example

- EF (● ∧ ●)
- EF AG (• \land •)

Bibliography

Expressiveness:

- Huth/Ryan: Logic in Computer Science, Section 3.5
- Baier/Katoen: Principles of Model Checking, Section 6.3

CTL Model Checking

- Bérard et al: System and Software Verification, Section 3.1
- Baier/Katoen: Principles of Model Checking, Section 6.4
- Clarke et al: Model Checking, Section 4.1
- Huth/Ryan: Logic in Computer Science, Section 3.6